Faculty Profile

Yang Zhang

Nuclear, Plasma, and Radiological Engineering
Yang Zhang
Yang Zhang
Assistant Professor
111A Talbot Laboratory MC 234
104 S. Wright Street
Urbana Illinois 61801
(217) 300-0452

Education

  • Ph.D., Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), 2010
  • B.S., Electrical Science and Technology, University of Science and Technology of China (USTC), 2004

Academic Positions

  • 2018 - present, Associate Professor, Department of Nuclear, Plasma, and Radiological Engineering, Department of Materials Science and Engineering, Department of Electrical and Computer Engineering; Core Faculty Member and Lead, Computational Molecular Science, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
  • 2012 - 2018, Assistant Professor, University of Illinois at Urbana-Champaign
  • 2010 - 2012, Clifford G. Shull Fellow, Oak Ridge National Laboratory.

For more information

Research Statement

The understanding of collective phenomena is one of the major intellectual challenges in many research fields. Conventional statistical methods have been successfully applied to describe systems at or near equilibrium, but they often fail to provide accurate predictions for systems and processes away from equilibrium, where time reversal symmetry and ergodicity are readily broken. Yet, patterns of amazing complexity spanning an immense range of hierarchical spatial and temporal scales - ubiquitous in the world around us - are formed from non-equilibrium conditions, such as turbulent flow, structure of the universe, social activities, and life itself. Research on such systems and processes may help identify the rule of randomness and recognize the role of correlated degrees of freedom in the organization and transport of energy and matter.

The research of our group focuses on the physics and chemistry of liquids, especially under extreme/interfacial/non-equilibrium conditions. We synergistically combine and push the boundaries of accelerated atomistic simulation methods that are based on statistical and quantum mechanical theories and neutron and X-ray scattering experiments. By studying a variety of liquids and liquid-like systems, the goal is to unravel the emergent principles that govern a much wider range of long timescale phenomena and rare events. On the application side, leveraging our expertise on soft materials, we design and build soft robots, wearable human-enhancing devices, and human-compatible machines that can lead to immediate societal impact.

To date, how to characterize and control matter away from equilibrium remains a grand challenge. From the fundamental science perspective, research on non-equilibrium phenomena may shed light on a class of scientific problems involving phenomena emerging from self-organization, symmetry breaking, and rare events, such as viscous flow of supercooled liquids and glasses, nucleation and crystal growth, folding of polypeptide chains into structured proteins, and self-assembly of micro-units into functional objects. From the application perspective, research on non-equilibrium phenomena may yield transformative knowledge that directly influence countless pivotal applications, such as understanding and preventing the aging and degradation of materials, bio-preservation by kinetically blocking the transition pathways, design and manufacture of novel amorphous materials with otherwise unattainable properties, and control of non-equilibrium processing techniques, as part of an overarching mission of fostering secure and reliable energy infrastructures that are environmentally and economically sustainable.

Research Interests

  • Physics and chemistry of liquids, especially under extreme/interfacial/non-equilibrium conditions; Accelerated atomistic simulation methods; Neutron and X-ray experiments; Long timescale phenomena and rare events
  • Soft robotics; human-compatible machines; wearable human-enhancing devices

Research Areas

  • Atomistic simulations
  • Computational Multi-Fluid Dynamics
  • Ion bombardment
  • Liquids and glassy materials
  • MD and kMC
  • Neutron and X-ray scattering
  • Soft and biological materials

Selected Articles in Journals

Journal Editorships

  • Associate Editor, Science and Technology of Advanced Materials, 2016 ￿ present

Honors

  • Landis Young Member Engineering Achievement Award, American Nuclear Society, , ￿in recognition of his contributions to nuclear and advanced experimental techniques to understand the complex makeup, nature and performance of materials in the far-from-equilibrium state￿ (2017)
  • Doctoral New Investigator Award, American Chemical Society Petroleum Research Fund (2015)
  • Collins Fellow, UIUC (2013)
  • List of Teachers Ranked as Excellent (Fall 2013, Fall 2014, Spring 2015, Spring 2017) (2013-2015)
  • Clifford G. Shull Fellowship, ORNL (2010)
  • Manson Benedict Award, MIT (2008)
  • Neutron Scattering Society of America Prize (2008)